Brain activation by central command during actual and imagined handgrip under hypnosis.
نویسندگان
چکیده
The purpose was to compare patterns of brain activation during imagined handgrip exercise and identify cerebral cortical structures participating in "central" cardiovascular regulation. Subjects screened for hypnotizability, five with higher (HH) and four with lower hypnotizability (LH) scores, were tested under two conditions involving 3 min of 1) static handgrip exercise (HG) at 30% of maximal voluntary contraction (MVC) and 2) imagined HG (I-HG) at 30% MVC. Force (kg), forearm integrated electromyography, rating of perceived exertion, heart rate (HR), mean blood pressure (MBP), and differences in regional cerebral blood flow distributions were compared using an ANOVA. During HG, both groups showed similar increases in HR (+13 +/- 5 beats/min) and MBP (+17 +/- 3 mmHg) after 3 min. However, during I-HG, only the HH group showed increases in HR (+10 +/- 2 beats/min; P < 0.05) and MBP (+12 +/- 2 mmHg; P < 0.05). There were no significant increases or differences in force or integrated electromyographic activity between groups during I-HG. The rating of perceived exertion was significantly increased for the HH group during I-HG, but not for the LH group. In comparison of regional cerebral blood flow, the LH showed significantly lower activity in the anterior cingulate (-6 +/- 2%) and insular cortexes (-9 +/- 4%) during I-HG. These findings suggest that cardiovascular responses elicited during imagined exercise involve central activation of insular and anterior cingulate cortexes, independent of muscle afferent feedback; these structures appear to have key roles in the central modulation of cardiovascular responses.
منابع مشابه
Evidence for central command activation of the human insular cortex during exercise.
The purpose of this investigation was to determine whether central command activated regions of the insular cortex, independent of muscle metaboreflex activation and blood pressure elevations. Subjects (n = 8) were studied during 1) rest with cuff occlusion, 2) static handgrip exercise (SHG) sufficient to increase mean blood pressure (MBP) by 15 mmHg, and 3) post-SHG exercise cuff occlusion (PE...
متن کاملEffects of partial neuromuscular blockade on sympathetic nerve responses to static exercise in humans.
We used intraneural recordings of sympathetic nerve activity in conscious humans to determine if central command increases sympathetic discharge to resting skeletal muscle during static exercise. In nine healthy subjects, we measured arterial pressure, heart rate, and muscle sympathetic nerve activity with microelectrodes in the peroneal nerve of the resting leg during 1) static handgrip at 15%...
متن کاملStimulation of skin sympathetic nerve discharge by central command. Differential control of sympathetic outflow to skin and skeletal muscle during static exercise.
Microneurographic measurements of muscle sympathetic nerve activity (SNA) have suggested that, during static exercise, central command is much less important than skeletal muscle afferents in causing sympathetic neural activation. The possibility remains, however, that the sympathetic discharge produced by central command is targeted mainly to tissues other than skeletal muscle. To examine this...
متن کاملSkeletal Muscle During Static Exercise
Microneurographic measurements of muscle sympathetic nerve activity (SNA) have suggested that, during static exercise, central command is much less important than skeletal muscle afferents in causing sympathetic neural activation. The possibility remains, however, that the sympathetic discharge produced by central commandis targeted mainly to tissues other than skeletal muscle. To examine this ...
متن کاملIncomplete inhibition of central postural commands during manual motor imagery.
Imagined movements exhibit many of the behavioral and neurophysiological characteristics of executed actions. As a result, they are considered simulations of physical actions with an inhibition mechanism that suppresses overt movement. This inhibition is incomplete, as it does not block autonomic preparation, and it also does not effectively suppress postural adjustments planned in support of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 92 3 شماره
صفحات -
تاریخ انتشار 2002